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Abstract—Cloud computing frameworks such as map-reduce
(MR) are widely used in the context of log mining, inverted
indexing, and scientific data analysis. Here we address the new
and important task of annotating token spans in billions of Web
pages that mention named entities from a large entity catalog
such as Wikipedia or Freebase. The key step in annotation is
disambiguation: given the token Albert, use its mention context
to determine which Albert is being mentioned. Disambiguation
requires holding in RAM a machine-learnt statistical model for
each mention phrase. In earlier work with only two million
entities, we could fit all models in RAM, and stream rapidly
through the corpus from disk. However, as the catalog grows to
hundreds of millions of entities, this simple solution is no longer
feasible. Simple adaptations like caching and evicting models
online, or making multiple passes over the corpus while holding
a fraction of models in RAM, showed unacceptable performance.
Then we attempted to write a standard Hadoop MR application,
but this hit a serious load skew problem (82.12% idle CPU).
Skew in MR application seems widespread. Many skew mitigation
approaches have been proposed recently. We tried SkewTune,
which showed only modest improvement. We realized that reduce
key splitting was essential, and designed simple but effective
application-specific load estimation and key-splitting methods.
A precise performance model was first created, which led to an
objective function that we optimized heuristically. The resulting
schedule was executed on Hadoop MR. This approach led to
large benefits: our final annotator was 5.4× faster than standard
Hadoop MR, and 5.2× faster than even SkewTune. Idle time
was reduced to 3%. Although fine-tuned to our application, our
technique may be of independent interest.

Keywords: MapReduce; Hadoop; Data Skew; Partitioning;
Web entity annotation.

1. INTRODUCTION

Thanks to automatic information extraction and semantic
Web efforts, Web search is rapidly evolving [1] from plain
keyword search over unstructured text to entity- and type-
oriented queries [11], [23], [26] over semi-structured databases
curated from Web text and online knowledge bases such as
Wikipedia and Freebase.

As just one example of the vast potential of semantic search,
if occurrences of the physicist Einstein are tagged in the Web
corpus, and a knowledge base establishes a connection from
the type scientist to Einstein, then we can directly return
the entity Einstein, rather than “ten blue links” to pages,
in response to the query scientist played violin.
One can easily envisage the power of further combining such
subqueries into complex queries, assembling tabular results,
and computing aggregate statistics.

The key challenge on the way to semantic search is scalable
and accurate annotation of entity mentions in Web text. There

are many Einsteins and even more John Smiths. Considering
a Web page as a sequence of tokens, given the tokens “Albert”
or “Agent Smith” on a Web page, we need to use contextual
information to judge which entity in our knowledge base, if
any, is mentioned at those spans. This is usually done by
sophisticated machine learning techniques [21], [6], [15], [14].

We are building CSAW [3], a Web-scale semantic annota-
tion and search system. While there is no dearth of knowledge
and public-domain code for harnessing commodity cluster
computing toward indexing and querying text corpora, very
little is known about the optimal use of, and benefit from,
popular cluster-computing paradigms in Web-scale entity an-
notation. That is the focus of this paper.

1.1. Entity annotation background

CSAW uses a type and entity knowledge base, hereafter
called the catalog. The type catalog is a directed acyclic graph
of type nodes. Edges represent the transitive and acyclic sub-
TypeOf relationship, e.g., Physicist subTypeOf Scientist. There
are also entity nodes, e.g., there is a node for the Physicist
Albert Einstein. Entity nodes are connected to type nodes by
instanceOf edges. Each entity is mentioned in ordinary text
using one of more lemmas. E.g., the city of New York may
be called “New York”, “New York City”, or “Big Apple”, and
Albert Einstein may be called “Einstein”, “Professor Einstein”,
or just “Albert”. The relation between entities and lemma
phrases is many-to-many. We will designate each lemma
phrase in our catalog with an ID `, and each entity with an
ID e.

As we scan a document, we will encounter occurrences of
lemmas in our catalog. Each such occurrence will be resolved
to be a reference to some entity in our catalog, or rejected
as not being in our catalog. E.g., there are many people
named Einstein that are not in Wikipedia. This is basically
a classification problem (where one class label is “reject”). To
solve the classification problem for one instance of a lemma `
appearing in a certain position p of a document d, a classifier
model M` needs to be loaded into RAM. The surrounding
context of the occurrence of ` is abstracted and distilled into a
context feature vector or CFV. Finally, the classifier reads the
CFV and outputs zero or more likely entities, possibly with
corresponding confidence scores. One such annotation record
looks like (d, p, e) (ignoring the confidence score). These are
later indexed into the form e→ {(d, p)}.
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1.2. The catalog scaling challenge

In the first edition of CSAW, our catalog contained about
2M entities from YAGO [27], a curated union of Wikipedia
and WordNet. Even with this small number of entities, fitting
M` for all ` simultaneously into the RAM of one host was
a challenge [2]. But doing so helped us annotate the corpus
at the greatest possible speed. Each host would load up all
lemma models, and then stream through its share (partition)
of the corpus. Any lemma encountered can be disambiguated
immediately.

Query coverage of CSAW depends critically on annotating
as many entities as possible, but YAGO registers only well-
known entities. We are in the process of evolving our catalog
from YAGO to include large parts of Freebase [8]. At the end
of this process, we estimate we will have about 40M entities.
At that point, one host’s RAM will no longer be able to hold
all lemma models. Even if we can somehow compress [2] the
models to barely fit into RAM, this is a suboptimal use of
RAM; we should rather reserve most of the RAM for index
runs, so that the runs are larger and fewer run merges are
needed in the end.

1.3. Our contributions

We begin, in Section 3, with the two simplest approaches
to extend our system:
• pack subsets of models into RAM for successive passes

over the corpus, and
• cache models and evict them if RAM is inadequate, while

making a single pass over the corpus.
We present measured or reliably estimated running times
and idle times with these approaches. Note that in both
approaches, all, or a major portion of mentions in a document
are disambiguated together in a batch.

Then, in Section 4, we propose a different paradigm that
involves preparing, for each mention encountered, a self-
contained record that includes all necessary context infor-
mation to disambiguate the mention. This record is called
a context feature vector or CFV. Before proceeding further,
we make preliminary measurements on the basic complexity
of this approach and show that it is competitive for our
application.

Once the practicality of scattering CFVs is established, it
is natural to explore a map-reduce framework [7]. This is
done in Section 5, a central focus of this paper. We show that
standard map-reduce implementations like Hadoop, and also
recent skew mitigation techniques, will not match up to the
workload offered by our application. Instead, we take control
of policies for model replication and the assignment of models
to processors. The result is a fully Hadoop-supported [12]
Web-scale annotator that needs negligible amounts of RAM
per cluster host and is 5.4× faster than standard Hadoop MR,
and 5.2× faster than even SkewTune.

1.4. CSAW system and testbed

The CSAW [5] production system runs on 40 DL160G5
data and compute hosts, and two DL180G5 name nodes

and NFS servers. Each host has 16 GB DDR2 RAM, eight
2.2GHz Xeon CPU cores, and two 1 TB 7200 rpm SATA hard
drives allocated to Hadoop. Our production Web corpus is
comparable to the ClueWeb12 [4] corpus, with 561,287,726
mostly-English pages. Each document, stripped of HTML tags,
is stored compressed, with a size of about 3KB, for a total of
about 1.6 TB.

When our annotator [2] is run on the corpus, on an average,
61 token spans per document are identified as potential refer-
ences to one or more entities among about two million entities
in YAGO [27]. Of these, on an average, 21 spans are actually
associated with entities after disambiguation. Native CSAW
(pre-Hadoop) takes about 0.6 milliseconds to disambiguate a
spot, and such speed is essential to process billions of pages
within practical time horizons.

Our final annotator described here can process the above
corpus with high efficiency. However, some of the competing
systems we have studied have much lower efficiency. To study
many performance parameters within reasonable real time,
we used a representative sample of the above corpus with
18 million documents, of total compressed size 54 GB. In
a similar spirit, we held the entity catalog fixed as YAGO
and simulated lemma model set scale-up (due to migration to
Freebase) by shrinking RAM by the same factor, to stress-test
all systems. For similar reasons, we ran most experiments with
20 of the 40 hosts, each using 4 cores.

2. RELATED WORK

Our approaches are inspired and guided by much recent
work on skew mitigation in MR applications. We will discuss
the most closely related work in detail in later sections. Here
we provide a broad overview. The problem of data skew in MR
is quite prevalent [25] and has been of significant interest for
many researchers. Lin [19] highlights the problem of stragglers
in MR due to Zipfian distribution of task times and how that
places inherent limits on parallelism, when constrained by the
requirement that all instances of the key must be processed
together. He suggests that application-specific knowledge be
used to overcome such efficiency bottlenecks. The central idea
in this literature is to devise techniques to estimate costs of
the application and modify the system to mitigate skew effects,
both statically and dynamically [18].

Kwon et al. [16] have proposed SkewReduce, where the
running time of different partitions depends on the input size
as well as the data values. It uses an optimizer which is
parametrized by user-defined cost function to determine how
best to partition the input data to minimize computational
skew.

SkewTune [17] is another approach which mitigates skew
in MR applications dynamically by re-partitioning and re-
assigning the unprocessed data allocated to a straggler to one
of the ideal nodes in the cluster.

Gufler et al. [9], [10] suggest cost models for reducers as
functions of the number of bytes and the number of records a
reducer needs to process. Their algorithm splits reduce input
data into smaller partitions, estimates their cost, and distributes
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smaller partitions using two load balancing approaches-fine
partitioning and dynamic fragmentation.

Whilst more general, these approaches do not mitigate skew
to the best possible extent in cases where the constraint for a
single reducer to process all the values corresponding to a key
is relaxed.

In more recent work [24], the keys are divided among
different partitions in order to obtain better load-balancing.
Their cost model assumes uniform per-record processing time
for different key-groups which turns out to be a very restric-
tive assumption for our application, as we shall see in the
upcoming sections.

3. SIMPLE ADAPTATIONS

3.1. Bin packing

The simplest adaptation that minimizes code changes is to
load a suitable subset of lemma models into RAM at a time,
and make multiple passes through the corpus. We call this the
bin-packing solution. Given each lemma model has size s` and
available RAM of a host is of size S, we are looking to pack
items {s`} into as few bins of size S as we can, to minimize
the number of passes through the corpus.

A standard and effective heuristic for (the NP-hard problem
of) bin packing is to sort models in decreasing size, pack them
in a bin until full, then allocate the next bin.

The obvious disadvantage of this approach is that the CPU
work needed to decompress and tokenize the corpus, and
turn lemma occurrences into CFVs, is not nearly negligible,
compared to the disambiguation work itself, and the former
will be repeated, perhaps needlessly, several times. However,
the simplicity of this scheme still makes it appealing to
evaluate.

Total number of lemma models 1,685,856
Total size of lemma models 2.17 GB
Size of largest model 1.37 MB
Size of smallest model 13 B
Average size of model 1.35 KB
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Figure 1. Distribution of lemma model sizes.

3.2. Bin packing performance
Figure 1 shows the distribution of lemma model sizes,

along with some summary numbers. The distribution is quite
skewed, the largest model being a thousand times larger than
the average.
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Figure 2. Number of corpus passes vs. cache size, using bin packing.
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Figure 3. Total time vs. cache size, using bin packing.

Figures 2 and 3 show the effect of increasing cache sizes
on the number of passes (bins) and the total time over all
passes. To interpret these numbers in context, we estimate that
incorporating Freebase will expand our total lemma model
size from 2.17GB to at least 30GB, about a 15× growth.
Therefore, as a reverse experiment, we can focus on the
100–200 MB range on the x-axis. I.e., we can calibrate our
performance when hosts have 1/10th to 1/20th of the RAM
needed for the current model size of 2.17GB. The number
of passes in this range is 10–20, and this is directly reflected
in the total running time. Given one pass over 500 million
documents takes about a day (on 20 hosts, not one), this is
completely unacceptable, especially so because much CPU
work in decompressing, tokenizing, and searching for spots
is needlessly repeated across the passes.
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3.3. Caching disambiguation models

Not only do lemma models have diverse and highly skewed
sizes, but the rates at which lemmas are encountered while
scanning the corpus are also highly skewed [2]. This raises the
hope that good hit rates and fast annotation may be achieved by
maintaining a cache of lemma models within limited RAM,
with a suitable model eviction policy such as least recently
used (LRU) and least frequently used (LFU). However, one
potential problem with caching is RAM fragmentation. In
earlier work [2], models for all lemmas were carefully packed
and compressed into one RAM buffer. Shattering that buffer
into individual lemma models of diverse sizes, and repeatedly
loading and unloading them from RAM, may cause intolerable
stress on the memory manager and garbage collector of the
JVM.
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Figure 4. Cache miss rate vs. cache size.

3.4. Caching performance

Figure 4 shows miss rates for LFU and LRU as lemma
model cache size is increased. LRU is superior. The absolute
miss rates may look reasonably low (few percent). But this
has to be reinterpreted in the light of the new application.
Globally, about 284,000 CFVs are generated per second, about
14,200 CFVs at each of 20 hosts, as the corpus is scanned,
tokenized, and lemmas are matched. Even a 10% miss rate
means 1,421 misses per second per host. Even leaving aside
for a moment the issue of cache memory management in the
JVM and attendant garbage collection (GC), a miss almost
certainly results in a disk seek (because the OS cache is
overwhelmed by corpus scan and later, index run write-outs),
which, on commodity 7,200 rpm disks, can easily cost 10
milliseconds. This makes miss servicing impossible even at
10% miss rates.

Figure 5 explores the sensitivity of the above findings to
growth in the size of the model set. At a cache size of
200–400 MB, misses per second per host can double if the
number of models is quadrupled. Therefore, extending from
Wikipedia to Freebase relying on a caching approach is out of

0

100

200

300

400

500

600

700

800

900

1000

1100

0 250 500 750 1000 1250

In
cr

e
a

se
d

 #
 M

is
se

s/
se

c

Cache Size (MB)

300%

100%

75%

50%

25%

11%

Figure 5. LRU miss rate change vs. percent increase in lemma model set.

the question — a larger catalog and richer features will only
make matters worse.

Given the diverse sizes of models (Figure 1) loaded, evicted
and reloaded, memory fragmentation and GC also presented
insurmountable difficulties and led to impractical running
times. Therefore we present just one data point: with 540 MB
cache, the 54 GB corpus took 7.6 hours, compared to about 6
hours with bin packing given the same RAM.

3.5. Distributed in-memory model storage

At this point, our predictable reaction was to investigate
the use of a distributed in-memory key-value store such as
Memcached [20] or HBase [13] by storing lemma models into
them (keyed by their ID), to see if we can avoid disk access
on cache miss by converting it to an access over the network.
Unless substantial tweaks (replication by hand, random key
padding) are undertaken, only one host will handle request for
a lemma key. Just to support the disambiguation of the most
frequent lemma, the key-value store should be able to serve
the corresponding model at the rate of 6.65 GB/s. Overall, to
keep up with document scanning, tokenization, and detection
of lemma matches, the key-value store should be capable of
serving about 284,000 requests per second, involving about
69 GB of network transfer per second. (See Figure 6 for
details.) These are all quite impractical on current commodity
networks. Moreover, preliminary extrapolation suggests that
quadrupling the number of lemma models will almost double
the query bandwidth demanded from the key-value store.
Therefore, matters will get much worse as we begin to
recognize new lemmas from Freebase not currently in our
catalog.

4. SCATTERING CONTEXT FEATURE VECTORS

Section 3 has made clear that retaining our earlier
document-streaming form of annotation is not feasible. The
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Lemma rank Bandwidth Queries/sec
1 6.65 GB/s 6,073
2 2.13 GB/s 2,641
3 2.11 GB/s 2,201
4 2.03 GB/s 2,107
5 2.01 GB/s 2,088
6 1.71 GB/s 2,036
7 1.37 GB/s 1,817
8 1.13 GB/s 1,509
9 1.12 GB/s 1,495

10 1.03 GB/s 1,471
Figure 6. Query and bandwidth demands by top lemmas on distributed
key-value store.

other option is to perform the decompression, scanning, to-
kenization, detection of lemma occurrences, and conversion
to CFVs exactly once, and thereafter work with CFVs alone,
distributed suitably across the cluster. (Whether CFVs are
instantiated to disk or not is a finer detail, depending on
how disambiguation tasks are scheduled.) In this section,
preparatory to applying MR (Section 5), we will evaluate and
establish that the CFV scattering protocol is practical.

Each CFV initially has a key `, its lemma ID. In the most
general setting, the system installs a disambiguator for each
lemma ` at one or more hosts, and CFVs keyed on ` are
communicated over the network to one of these hosts, to get
disambiguated. Different lemmas are encountered at diverse
rates in the corpus. E.g., “John Smith” is far more frequent
than “Apostoulos Gerasoulis”. To address this skew, we may
choose to more aggressively replicate M` for frequent ` to
more hosts than rarer lemmas.

4.1. The global CFV shuffle

Consider all CFVs destined to one host. One option is to
process them in the arbitrary order in which they are received,
avoiding a per-host sort. In this case, as we disambiguate CFVs
one by one, any CFV may call upon any M`, and this would
have to be loaded from disk. If we overflow RAM, some
other M`s will need to be discarded. We can set up a suitable
caching protocol to make it more likely that a demanded M`

is found in RAM when needed. Section 3.4 hints that this
strategy may not succeed.

The alternative is to invest time up-front to sort the incoming
CFVs by key `. The collection of all CFVs sent to a host
will usually be large and disk-resident, so actual data (and
not just an indirection array of keys) reorganization will be
involved in the sort. However, the benefit is that CFVs will
now be processed at each host in lemma order. All work for
one lemma will be completed before moving on to the next, so
only one M` needs to be in RAM at any time. Thus, our RAM
requirement per host will be essentially negligible (beyond the
lemma dictionary, usually stored in RAM as a trie).

Summarizing the design discussion up to now,
1) documents are scanned and a sequence of CFVs in no

particular ` order are emitted from each host,

2) these CFVs are reshuffled through all-to-all communi-
cation,

3) all CFVs sent to a destination host are sorted by `,
4) each host loads in sequence a (sub)set of M`s, and

completes disambiguation for all CFVs with key ` in
one chunk.

Compressed corpus size per document 3 KB
Size of CFVs emitted per document 11.8 KB
Time to convert document into CFVs 17 ms/doc
Minimum ambiguity of a lemma 2
Maximum ambiguity of a lemma 742
Minimum number of CFVs for a lemma 1
Maximum number of CFVs for a lemma 23.42 million
Minimum work for a lemma 0.6 ms
Maximum work for a lemma 14h 12m

Figure 7. CFV statistics.

4.2. Preliminary measurements
Figure 7 shows some key statistics about CFVs. Generating

CFVs from documents takes about half the time as disam-
biguating them. However, a 3 KB compressed document blows
up to almost four times that size in CFVs. Therefore we
also need to estimate the time taken to communicate CFVs
across the cluster, and make sure the communication time
does not dominate computation time. Our final system sends
and receives a total of about 24 GB per host, which (even if
not overlapped with computation) takes about 33 minutes in
parallel, which is small compared to overall job time.
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Figure 8. Distribution of ambiguity across lemmas.

Figure 8 shows the distribution of the number of candidate
entities (“ambiguity”) per lemma (which is highly skewed).
Figure 9 shows the distribution of number of CFVs per lemma
(which is again highly skewed). The total CPU work for a
lemma is the product of the number of CFVs, and the time
to process a CFV. We model the latter using the least-square
linear regression

time/CFV = 0.0044 · ambiguity + 0.045 (1)
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Figure 9. Distribution of CFV corpus occurrence counts across lemmas.

(see Figure 10). Combining CFVs per lemma with time per
CFV, we get the distribution of total work (time) per lemma,
shown in Figure 11.
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Figure 10. Work per CFV regression.

Notably, being among the heavy hitters (say, top 10) in
one dimension (e.g., degree of ambiguity or number of corpus
occurrences) is no measure of being a heavy hitter in another
dimension (say, total work). This is shown in Figure 12.
Among the top 10 lemmas in terms of CFV occurrence count,
only 5 appear in the list of top 10 lemmas in terms of work.
This highlights the limitation of techniques that attempt to
estimate the work in a reduce task based only on the total
volume of records destined for the reducer. Also, Figure 10
clearly hints at design of work estimates involving variable per
record processing cost for different key-groups as opposed to
uniform-cost assumptions [24].

4.3. Greedy CFV allocation and schedule

Even before getting into MR- or Hadoop-specific issues,
we collected all CFVs for a lemma into an indivisible task
for the lemma, and greedily packed these tasks into 20 hosts,
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Figure 11. Distribution of total work per lemma.

Degree of Occurrences Total
ambiguity in corpus time

486 23,424,399 14h 12m
517 3h 12m
332 1h 31m
331 1h 13m

54 10,186,769 48m
71 8,488,375 51m
69 8,126,416 47m
51 8,052,132

742 7,853,852 7h 13m
29 7,008,439
47 5,820,516
42 5,766,605
8 5,672,619

Figure 12. Top lemmas in terms of degree of ambiguity, occurrences in the
corpus, and total disambiguation time needed. Each row represents a lemma.
A blank cell means that lemma was not in the top 10 for that column.

each with 4 cores. (Computation was balanced across 80 cores
without regard to communication balance across 20 network
interfaces, so this is somewhat naive.) Tasks were sorted in
decreasing work order and each successive task sent to the
currently least loaded core. While unlikely to be competitive,
the advantage of such a schedule is that each lemma model
has a “home” host, where its model is loaded exactly once,
and all CFVs of that lemma are processed in one batch.

The result is shown in Figure 13. The first host to finish
takes 20 minutes, while the last straggler takes 14 hours and 32
minutes. This means that the average host is idle for 13 hours
and 41 minutes, or 94% of the time. This is early warning that
any MR implementation with a single reduce key per lemma
is doomed, and key splitting is vital.

Computation imbalance is accompanied by communication
imbalance, as shown in Figure 14. There is little or no cluster-
ing of lemmas across the shards of the corpus, so the outflow
of CFVs from all hosts is fairly uniform. However, the inflow
is highly imbalanced, overloading some hosts with CFVs of
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Figure 13. Computation imbalance in greedy scheduling.

“hot” lemmas. Again, note that the number of communication
hotspots is different from the number of computation hotspots.

Maximum outgoing traffic/host 11.50 GB
Minimum outgoing traffic/host 8.80 GB
Maximum incoming traffic/host 29.98 GB
Minimum incoming traffic/host 6.83 GB
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Figure 14. Communication imbalance in greedy scheduling.

5. USING MAP-REDUCE

The structure of the computation makes it natural to want
to use map-reduce (MR). MR significantly eases coding up
certain classes of distributed computations, hiding issues of
data layout, storage fault tolerance, communication, and failed
jobs. To use MR, we have to implement two interfaces:

map : input→ list(k, v)
reduce : (k, list(v))→ output

Two canonical examples of MR are counting words and
preparing an inverted index for a document corpus. To output
a count of each word in a corpus of documents, the map task
or “mapper” scans and tokenizes input text, and, for each word
k, outputs a record (k, 1), with a string and an integer. The
“reducer”, given input list(k, v), outputs a record (k,

∑
v).

To prepare the inverted index for a corpus, each document
is assigned an integer ID d. While scanning document d, the
mapper outputs records (k, d) for each word k. The reducer’s
input record is list(k, d) and the output is (k, list(d)) where
list(d) is a compressed posting list.

5.1. Vanilla Hadoop

In our case, it is most natural to use mappers to transform
inputs (text documents) to CFVs keyed by lemma ID, and
reducers to transform CFVs to annotation records (outputs). In
the most natural use of MR, we would use approximately as
many mappers as there are CPU cores, and as many reducers
as lemma IDs. Each reducer would load one M` and handle
all CFVs keyed on that lemma `. Thus, a lemma model would
never be replicated; all CFVs with that lemma would be sent
to the host loading that model.

The first problem with this plan is that no known Hadoop
implementation will support tens of thousands to millions of
reducers per physical host. Secondly, different lemmas have
vastly different amounts of total work, which may lead to
substantial reduce load imbalance. Hadoop does allows us
to impose external constraints on the maximum number of
reducers permitted to coexist on each host (e.g., the number
of cores per host). It uses a hash partitioner to allocate keys
to reducers. The resulting packing may reduce skew, but, as
we shall see, the residual skew will be intolerably large. We
call this setup vanilla Hadoop hereafter.
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Figure 15. Computation imbalance for vanilla Hadoop.

Figure 15 shows the computation profile of vanilla Hadoop.
The time to completion (including communication inside
Hadoop) is 20 hours and 19 minutes, but CPUs are idle 82.12%
of the time (16 hours, 41 minutes). The shortest reduce takes
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16 minutes, while the longest one takes 17 hours and 44
minutes.

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19

G
B

Host

Figure 16. Inbound communication distribution for vanilla Hadoop.

Figure 16 shows the inbound communication profile. The
maximum and minimum inbound data volumes are 13.79 GB
and 7.28 GB. Note that Hadoop’s hash partitioning reduces
communication imbalance as compared to Greedy scheduling
(Figure 14).

5.2. Skew mitigation by SkewTune

As reviewed in Section 2, many systems have been pro-
posed for skew mitigation. We will evaluate SkewTune [17],
one popular recent skew mitigation strategy integrated into
Hadoop and available publicly. SkewTune supports dynamic
reassignment of reduce tasks to handle user-defined operations
(UDOs). SkewTune does not split keys to preserve MR se-
mantics, and this makes it ineffective for our goal. Compared
to vanilla Hadoop’s 20h 19m, SkewTune takes 19h 31m to
complete, which is only 1.04× faster. CPUs are idle, on an
average, for 15h 45m, or 80.7% of the job time.

5.3. Our skew mitigation approach

Technically, we do not really need a standard reducer to
perform disambiguation, because, as we have mentioned, M`

can be loaded and used at any number of hosts. Further, all
the CFVs with key ` need not be combined in any way. (In
fact, after disambiguation, they are to be regrouped by entity
ID e instead, for indexing.)

Given the above discussion, we can set a degree of replica-
tion P` for each lemma model, where 1 ≤ P` ≤ P , P being
the total number of reducers we choose to configure. We could
select P` in a variety of ways, based on our offline estimate of
total disambiguation CPU work for each ` (from Section 4.2).
We can then have a fancy scheme to divide the total work
for a lemma into its P` model replicas, but we instead restrict
ourselves to the simplest scheme of dividing the work equally
amongst the P` replicas.

Moreover, as we shall see in the next section that an all-
or-nothing approach of selecting P` i.e. setting P` = P for
top K jobs and P` = 1 for the rest, gives us a solution which
lies within a constant factor (much closer to one) of the best
possible.

We use the aforementioned heuristic of equal work distribu-
tion amongst P` replicas and limiting P` to 1 or P on a sample
of our dataset and carry out an offline greedy scheduling of
resulting tasks (as described in the next section), and finally
store the schedule in a file.

We then use the file thus generated to implement the
schedule by using a custom partition function (instead of the
default hash partitioner) and assign a CFV for a lemma `
uniformly at random to one of its P` disambiguator instances.

Each reducer (disambiguator) processes CFVs in ` order,
and needs to load and unload each M` only once. Therefore,
our reducers need negligible amounts of RAM for loading
models.

5.4. Scheduling objective and approaches

For L independent tasks with task work times
W1, . . . ,W`, . . . ,WL, scheduled on P processors, a lower
bound to completion time is

max

{
max
`
W`,

1

P

∑
`

W`

}
, (2)

i.e., the maximum of the largest task time and average task
time per processor. A standard (offline) way to address this
(NP hard) scheduling problem is to start with P idle proces-
sors, sort the tasks in decreasing work times W1 ≥ · · · ≥WL,
and pack the next task to the processor with the currently
earliest finish time (EFT). It is easy to see that the EFT
schedule finishes all tasks within time

max
`
W` +

1

P

∑
`

W`, (3)

i.e., within a factor of two of the best possible. (In practice,
the typical factor is much closer to one.) This is true of tasks
that are indivisible. Clearly, max`W` is the source of trouble.
Lin [19] has analyzed this issue in more depth: a typical
Zipfian (or power law, or heavy tailed) distribution of task
times imposes fundamental limits to parallelism unless task
splitting is possible.

As discussed before, suppose M` is replicated to P` hosts,
and the work W` is perfectly divisible into these P` hosts.
This creates P` tasks, each with time M`/P`. However, there
is a fixed overhead time of c for each resulting task. Then the
optimal and EFT schedules are both within a constant factor
of

max
`

[
W`

P`
+ c

]
+

1

P

∑
`

P`

[
W`

P`
+ c

]
= max

`

[
W`

P`
+ c

]
+

1

P

∑
`

(W` + cP`). (4)
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Therefore the optimization we face is

min
{1≤P`≤P :`=1,...,L}

max
`

[
W`

P`
+ c

]
+

1

P

∑
`

(W` + cP`), (5)

= c+
1

P

∑
`

W`︸ ︷︷ ︸
const.

+ min
{1≤P`≤P :`=1,...,L}

max
`

W`

P`
+
c

P

∑
`

P`.

where we need to choose replication P` for each lemma model
M`. This represents PL combinations.

Instead of searching over those, we will propose candidate
values T0 for the term max`W`/P`, check if each T0 is
feasible, and pick the best overall estimate of finish time Tf
over all feasible T0s.

1: initialize best finish time Tf ←∞
2: for each proposed T0 do
3: for each ` = 1, . . . , L do
4: let P` ← dW`/T0e
5: if P` > P then
6: T0 is infeasible, continue with next T0
7: Tf ← min{Tf ,max`W`/P` + (c/P )

∑
` P`}

8: return best Tf with corresponding P`s

The following analysis suggests that there is no need to scan
through all values of T0; we will get near-optimal overhead if
we check T0 = 1, 2, 4, 8, . . . for feasibility, then binary-search
between the last infeasible and first feasible values for T0.

In practice, even the binary search for T0 can be avoided
using the following all-or-nothing policy: For some K of the
largest jobs, set P` = P ; for the rest, set P` = 1. K is
tuned to minimize the above objective. We now give some
informal justification why this simpler scheme is good enough
for highly skewed task times (as in Figure 11).

Let us model the task time skew using the commonly-used
power-law distribution:

W` =
T

`α
, with ` = 1, . . . , L, (6)

where α > 1 is the power and we have assumed W1 ≥ · · · ≥
WL without loss of generality. Then the total work in the
system is∑

`

W` = T
∑
`

`−α ≈ T
∫ L

0

`−αd`

=
T

α− 1

[
1− 1

Lα−1

]
≈ T

α− 1
for large L. (7)

Suppose we split lemmas up to `0; then, even for the extreme
case of c = 0, `0 satisfies

T

P`α0
≥ T

P (α− 1)
= (average work/proc), (8)

or `0 ≤ (α− 1)1/α. (9)

In other words, the same power-law skew that limits paral-
lelism [19] also limits the number of tasks that need to be
split for good load balance.

From the previous discussion, we note that when we pick
P` = 1, the optimal solution has no motivation to allocate
P` > 1, and so, the excess cost of our heuristic is at most

c

P
(P − 1)`0 ≤ c(α− 1)1/α, (10)

or, a constant number of per-task overheads. As a sample,
α = 1.2 =⇒ (α − 1)1/α ≈ 0.26, and α = 3 =⇒ (α −
1)1/α ≈ 1.26.

This approach can be used for any application in general, by
optimizing the aforementioned objective to obtain the optimal
number of partitions (per key); which can then be used to plan
the schedule (greedily), using offline estimates of the work on
a sample of data. A custom partition function can then be used
to implement the schedule thus obtained.
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Figure 17. Computation imbalance for our technique.

5.5. Performance of our approach

Figure 17 shows the CPU busy times on 80 cores, using
our proposed scheduler. The overall job time reduces from
19h 31m to 3h 47m with an additional (one-time) overhead
of 50 minutes for creation of schedule using a sample 6 GB
corpus. The average CPU idle time is 7 minutes, or 3% of job
time. The maximum and minimum reducer times are 69 and 59
minutes, representing excellent load balance. Figure 18 shows
that inbound communication is also well-balanced, although
no conscious effort was made in that direction: the maximum
and minimum number of bytes destined to a host were 10.7 GB
and 8.65 GB.

6. CONCLUSION

We have described the evolution of a critical Web annotation
application from a custom implementation to a highly opti-
mized version based on Hadoop MR. The evolution was crit-
ical as an essential data structure began to exceed RAM size
on our cluster. We started with two incremental approaches,
but their performance was unacceptable. Then we attempted to
use standard Hadoop, but hit a serious (reduce) skew problem,
which seems endemic in MR applications in this domain. We
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Figure 18. Communication imbalance for our technique.

also tried a recent skew mitigation strategy (SkewTune) but
with only modest improvement. Inspired by recent work in
reduce key-splitting, we finally designed our own methods for
load estimation, key-splitting, and scheduling.

A precise performance model was first created, which led
to an objective function that we optimized heuristically. This
approach led to large benefits: our final annotator was 5.4×
faster than standard Hadoop MR, and 5.2× faster than even
SkewTune. Our technique and tweaking on top of Hadoop may
be of independent interest, and may be desirable to add to the
Hadoop library as supplementary part of the MR API.

If we could materialize all CFVs to disk, we might express
disambiguation as a distributed equi-join (on lemma ID), using
HBase or Pig [22], and then write user-defined functions on
joined tuples to complete the disambiguation. However, we
measured the volume of CFVs emitted per document to be
almost four times its compressed size. For our 1.6 TB corpus,
that means 6.77 TB of CFVs stored in HDFS (which will
further impose a 3× replication). If one can afford that kind
of storage for transient data, it may be worthwhile exploring
the join option.
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